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MOTIVATION AND OBJECTIVE 
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Motivation 
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• Temperature sensor for harsh-environments: 
• Coal gasifier  (major focus of prior work). 
• Gas turbine. 

• Temperature measurement is critical for: 
• Gasifier start-up. 
• Process optimization. 
• Event/failure detection. 

• Help make gasification cost-competitive. 
• Reduce down-time. 
• Improve operational efficiency. 



The Gasifier Environment 
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• Coal gasifiers - challenging harsh 
environment: 
• High temperatures:  well above 1000oC. 
• Extreme corrosion: 

• coal slag. 
•alkali vapors. 
• transition metals. 

 



Existing Temperature Sensors 
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• Precious metal-based thermocouples: 
• Typical lifetime is a few days – weeks. 

• Attack by alkali vapors and transition metals. 
• Build-up of solid coal slag affects measurement and 

accelerates corrosion. 

• Optical pyrometers: 
• Infrared window required to maintain pressure 

boundary. 
• Deposition of slag & other contaminants blocks sight path. 

• Acoustic pyrometers: 
• Noise from equipment in the plant  
 obstructs signal. 
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Overall Project Objective 

To develop a new sensor technology that can 
survive and perform well with a long lifetime in a 
coal gasifier environment. 



BACKGROUND AND 
FUNDAMENTAL 
TECHNOLOGY 
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Background: Corrosion Test 
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Single-crystal sapphire: 
• Melts at 2050oC. 
• Optical transmission > 85%. 
• Chemically inert at high temperatures. 
• Survived coal slag corrosion test at 1200-

1300oC. 
 

 



Technical Approach 
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WLI system schematic. 

• Sapphire wafer provides EFPI 
surfaces. 
• Single-crystal wafer is: 

• Inherently parallel. 
• Inherently flat & smooth. 

 

• Sapphire fiber based white-light 
interferometry: 
• Accurate, reliable, low cost . 

 

Sapphire Fiber Wafer

Input

Output

Sapphire sensor 
structure. 

OceanOptics 
Spectrometer

850nm LED 3-dB coupler Index-
matching

Sensor

Y. Zhu, Z. Huang, F. Shen, and A. Wang, “Sapphire-fiber-based 
white-light interferometric sensor for high-temperature 
measurements,” Opt. Lett., vol. 30, no. 7, pp. 711-713 (2005). 



Field Test Results (I) 
• Field test at Tampa Electric Co. (May 2006): 
• Survived for 7 months: 
 Great potential for commercial use. 
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Coal Gasifier Temperature: Sapphire Fiber Sensors vs. Thermocouples

Thermocouple 103a
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Thermocouple 103c
Sapphire Sensor

Sensor installation. 

Measured temperature 
history for 7 months. 



Phase III Objectives 
 

Objective: 
 The objective is to demonstrate the full capability of an 

integrated sapphire optical temperature sensor through 
the development of sapphire based sensor assemblies 
and performance evaluation of the sensor on a full scale 
coal gasifier and a bench scale aero thermal turbine 
combustion rig. 
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PROJECT PROGRESS 
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Progress (I) 
• Silica to sapphire splicing optimization: 
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System for characterizing the 
splicing quality 

a. Sapphire fiber angle- polished  end 
face. b. sapphire-silica splicing. c. splicing 
point with angle- polished  sapphire fiber.  

a 

b 

c 
Spectrometer

SLED

Coupler

100/140um 
Multi-Mode Fiber Removable 

Sensor HeadSapphire Fiber

Splice 
Point 15cm

Optimum polish angle 
Result showing the 
determination of the 
optimum polishing angle to 
yield minimum back 
reflection.  



Progress (II) 
• Improved fringe quality by polishing : 

 

15 

Fringe visibility 
as a function of 
wafer thickness 

Polishing platen for 
controlled wafer thinning.  

Screw adjusts 
position of platen

Polishing Puck
Platen

Sapphire Wafer

Fringe of a sapphire wafer 
demonstrating improved contrast.  



Progress (III) 
• Improved sensor design: 
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Au-coated fiber Bendable sapphire tube Sensor in alumina tube 
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Cubic fitting
Demodulated value

New sensor design: 
lab testing result. 

The new design allows for 
better protection of the 
sapphire components.  



Theoretical Issues with Fiber Interferometry 

input fiber reflector 
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Progress (IV) 
• Modeling of the low-finesse FP cavity. 
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Improved model reveals 
parameters affecting the 
signal quality[1] 

Model for calculating the 
longitudinal power distribution and 
interference spectra of the FP cavity.  

[1] Cheng Ma, et al, “Decoding the spectra of low-finesse extrinsic opticl fiber Fabry-
Perot interferometers”, Optics Express, 19, pp.23727, 2011 



Progress (V) 
• Improved WLI based signal processing. 
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Improved signal processing reaches the 
theoretical limit of resolution[1] 

[1] Cheng Ma and Anbo Wang, “On the signal processing of WLI low-finesse fiber 
optic Fabry-Perot sensors”, to be submitted to Applied Optics 

a. A non-constant phase term was 
analyzed. b. A special treatment of the 
phase term results in dramatically 
reduced jump probability[1]  



Progress (VI) 
• Improved sensor packaging: 
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Progress (VI), contd. 
• Improved sensor packaging: probe assembly. 
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1~4: Blank probe 
assemble process.  

1 2 

3 4 



Progress (VII) 
• Blank probe field test (starting Feb 1, 2012): 
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Field installation. Schematic drawing of 
the cross-section of 
the refractory wall. Thermocouple 

reading (15 days). 



Progress (VIII) 
• Probe design for field testing at NETL: 
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Progress (Summary) 
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