Advanced Research Sensor and Controls Project Review Meeting DOE NETL Morgantown, WV 03/12/2012

SINGLE-CRYSTAL SAPPHIRE OPTICAL FIBER SENSOR

DE-FC26-99FT40685

Anbo Wang, Gary Pickrell, Ke Wang, Cheng Ma, Brian Scott Virginia Tech Center for Photonics Technology Blacksburg, VA 24061 awang@vt.edu http://photonics.ece.vt.edu/

- Motivation & Objective
- Background and Fundamentals of Proposed Technology
- Project Scope and Work Plan
- Project Progress

MOTIVATION AND OBJECTIVE

UrginiaTech

Motivation

- Temperature sensor for harsh-environments:
 - Coal gasifier (major focus of prior work).
 - Gas turbine.
- Temperature measurement is critical for:
 - Gasifier start-up.
 - Process optimization.
 - Event/failure detection.
- Help make gasification cost-competitive.
 - Reduce down-time.
 - Improve operational efficiency.

The Gasifier Environment

- Coal gasifiers challenging harsh environment:
 - High temperatures: well above 1000°C.
 - Extreme corrosion:
 - coal slag.
 - alkali vapors.
 - transition metals.

Existing Temperature Sensors

- Precious metal-based thermocouples:
 - Typical lifetime is a few days weeks.
 - Attack by alkali vapors and transition metals.
 - Build-up of solid coal slag affects measurement and accelerates corrosion.
- Optical pyrometers:
 - Infrared window required to maintain pressure boundary.
 - Deposition of slag & other contaminants blocks sight path.
- Acoustic pyrometers:
 - Noise from equipment in the plant obstructs signal.

Overall Project Objective

To develop a new sensor technology that can survive and perform well with a long lifetime in a coal gasifier environment.

BACKGROUND AND FUNDAMENTAL TECHNOLOGY

Background: Corrosion Test

Single-crystal sapphire:

- Melts at 2050°C.
- Optical transmission > 85%.
- Chemically inert at high temperatures.
- Survived coal slag corrosion test at 1200-1300°C.

Technical Approach

- Sapphire wafer provides EFPI surfaces.
 - Single-crystal wafer is:
 - Inherently parallel.
 - Inherently flat & smooth.
- Sapphire fiber based white-light • interferometry:
 - Accurate, reliable, low cost.

Sapphire sensor structure.

Field Test Results (I)

- Field test at Tampa Electric Co. (May 2006):
- Survived for 7 months:

Great potential for commercial use.

 Measured temperature history for 7 months.

Phase III Objectives

Objective:

The objective is to demonstrate the full capability of an integrated sapphire optical temperature sensor through the development of sapphire based sensor assemblies and performance evaluation of the sensor on a full scale coal gasifier and a bench scale aero thermal turbine combustion rig.

PROJECT PROGRESS

Progress (I)

• Silica to sapphire splicing optimization:

• a. Sapphire fiber angle- polished end face. b. sapphire-silica splicing. c. splicing point with angle- polished sapphire fiber.

Progress (II)

• Improved fringe quality by polishing :

Theoretical Issues with Fiber Interferometry

It seems very logical to express the differential phase delay as

$$\varphi = \frac{\Delta}{\lambda} \cdot 2\pi + \varphi_o$$

where λ is light wavelength and φ_o is assumed to be a constant. The output intensity is then simply given by $I = I_o (1 + \gamma \cos \varphi) \mathbf{r}$

CENTER FOR PHOTONICS TECHNOLOGY

F-P Demodulation Jumps

Progress (IV)

• Modeling of the low-finesse FP cavity.

Progress (V)

Improved WLI based signal processing.

Invent the Future

[1] Cheng Ma and Anbo Wang, "On the signal processing of WLI low-finesse fiber optic Fabry-Perot sensors", to be submitted to *Applied Optics*

Progress (VI)

Improved sensor packaging:

Progress (VI), contd.

• Improved sensor packaging: probe assembly.

1~4: Blank probe assemble process.

←

Progress (VII)

• Blank probe field test (starting Feb 1, 2012):

Progress (VIII)

• Probe design for field testing at NETL:

Progress (Summary)

		BUDGET PERIOD 1						BUDGET PERIOD 2					
		Project Year 1					Project	Year	2		Project Year 3		
TASK #	TASK TITLE	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
Task 1	Project Management and Planning		[M1]		ĺ	lî	1	r i			1		
COAL GASIFIER APPLICATION:													
Task 2	Technical Requirement Specification				[M2]								
Task 3	Design, Engineering, and Assembly of Sensor Probe					[M3]		a 0 a a					
Task 4	Laboratory Testing								[M4]				
Task 5	Design and Construction of Final Packaging System										1		
Task 6	Preparation, Installation of Probe and Field Testing											[M5]	
Task 7	Analysis of Results and Perparation of Final Report												[M6]
GAS TURBINE APPLICATION:													
Task 8	Technical Requirement Specification				[M7]								
Task 9	Design and Assembly of Sensor Probe					[M8]			()				
Task 10	Laboratory Testing								[M9]				
Task 11	Design and Construction of Final Packaging System												
Task 12	Preparation, Installation of Probe and Field Testing							5. 58 5. 59				[M10]	
Task 13	Analysis of Results and Preparation of Final Report												[M11]

Acknowledgement

We cordially thank our industrial collaborator Eastman Chemical Co. for their help with the sensor probe package design and field installation.

